Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 30(4): 1143-1153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472295

RESUMO

Neurodegenerative disorders exhibit considerable clinical heterogeneity and are frequently misdiagnosed. This heterogeneity is often neglected and difficult to study. Therefore, innovative data-driven approaches utilizing substantial autopsy cohorts are needed to address this complexity and improve diagnosis, prognosis and fundamental research. We present clinical disease trajectories from 3,042 Netherlands Brain Bank donors, encompassing 84 neuropsychiatric signs and symptoms identified through natural language processing. This unique resource provides valuable new insights into neurodegenerative disorder symptomatology. To illustrate, we identified signs and symptoms that differed between frequently misdiagnosed disorders. In addition, we performed predictive modeling and identified clinical subtypes of various brain disorders, indicative of neural substructures being differently affected. Finally, integrating clinical diagnosis information revealed a substantial proportion of inaccurately diagnosed donors that masquerade as another disorder. The unique datasets allow researchers to study the clinical manifestation of signs and symptoms across neurodegenerative disorders, and identify associated molecular and cellular features.


Assuntos
Processamento de Linguagem Natural , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Países Baixos/epidemiologia
2.
Cell Rep ; 43(2): 113764, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358885

RESUMO

Over half of patients with brain tumors experience debilitating and often progressive cognitive decline after radiotherapy treatment. Microglia, the resident macrophages in the brain, have been implicated in this decline. In response to various insults, microglia can develop innate immune memory (IIM), which can either enhance (priming or training) or repress (tolerance) the response to subsequent inflammatory challenges. Here, we investigate whether radiation affects the IIM of microglia by irradiating the brains of rats and later exposing them to a secondary inflammatory stimulus. Comparative transcriptomic profiling and protein validation of microglia isolated from irradiated rats show a stronger immune response to a secondary inflammatory insult, demonstrating that radiation can lead to long-lasting molecular reprogramming of microglia. Transcriptomic analysis of postmortem normal-appearing non-tumor brain tissue of patients with glioblastoma indicates that radiation-induced microglial priming is likely conserved in humans. Targeting microglial priming or avoiding further inflammatory insults could decrease radiotherapy-induced neurotoxicity.


Assuntos
Encéfalo , Microglia , Humanos , Ratos , Animais , Microglia/metabolismo , Imunidade Inata
3.
Nat Immunol ; 24(7): 1188-1199, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322178

RESUMO

Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFß and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFß-SMAD signaling axis.


Assuntos
Microglia , Fatores de Transcrição , Animais , Camundongos , Sítios de Ligação , DNA , Camundongos Knockout , Microglia/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Front Immunol ; 14: 1168539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359515

RESUMO

Microglia, the macrophages of the brain, are vital for brain homeostasis and have been implicated in a broad range of brain disorders. Neuroinflammation has gained traction as a possible therapeutic target for neurodegeneration, however, the precise function of microglia in specific neurodegenerative disorders is an ongoing area of research. Genetic studies offer valuable insights into understanding causality, rather than merely observing a correlation. Genome-wide association studies (GWAS) have identified many genetic loci that are linked to susceptibility to neurodegenerative disorders. (Post)-GWAS studies have determined that microglia likely play an important role in the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The process of understanding how individual GWAS risk loci affect microglia function and mediate susceptibility is complex. A rapidly growing number of publications with genomic datasets and computational tools have formulated new hypotheses that guide the biological interpretation of AD and PD genetic risk. In this review, we discuss the key concepts and challenges in the post-GWAS interpretation of AD and PD GWAS risk alleles. Post-GWAS challenges include the identification of target cell (sub)type(s), causal variants, and target genes. Crucially, the prediction of GWAS-identified disease-risk cell types, variants and genes require validation and functional testing to understand the biological consequences within the pathology of the disorders. Many AD and PD risk genes are highly pleiotropic and perform multiple important functions that might not be equally relevant for the mechanisms by which GWAS risk alleles exert their effect(s). Ultimately, many GWAS risk alleles exert their effect by changing microglia function, thereby altering the pathophysiology of these disorders, and hence, we believe that modelling this context is crucial for a deepened understanding of these disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas/genética
5.
Ann Clin Transl Neurol ; 9(8): 1289-1295, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35684951

RESUMO

Parkinson's disease and Alzheimer's disease show overlapping features both clinically and neuropathologically and elucidating shared mechanisms could have important implications for therapeutic strategies. Evidence for genetic overlap is limited, although enrichment of heritability in genomic regions relevant to microglia has been demonstrated in both disorders. Using summary statistics from genome-wide association studies, we assessed genetic covariance stratified by cell types and local genetic correlation between Parkinson's and Alzheimer's disease. Significant covariance was observed for neurons only (p = 0.00046), and local genetic correlation was significant only in the human leukocyte antigen region (p = 1.0e-05). Our findings support a minor genetic overlap between these two disorders.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
6.
Science ; 373(6550)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210853

RESUMO

The mechanisms by which macrophages regulate energy storage remain poorly understood. We identify in a genetic screen a platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF)-family ortholog, Pvf3, that is produced by macrophages and is required for lipid storage in fat-body cells of Drosophila larvae. Genetic and pharmacological experiments indicate that the mouse Pvf3 ortholog PDGFcc, produced by adipose tissue-resident macrophages, controls lipid storage in adipocytes in a leptin receptor- and C-C chemokine receptor type 2-independent manner. PDGFcc production is regulated by diet and acts in a paracrine manner to control lipid storage in adipose tissues of newborn and adult mice. At the organismal level upon PDGFcc blockade, excess lipids are redirected toward thermogenesis in brown fat. These data identify a macrophage-dependent mechanism, conducive to the design of pharmacological interventions, that controls energy storage in metazoans.


Assuntos
Adipócitos/imunologia , Dieta Hiperlipídica , Proteínas de Drosophila/metabolismo , Metabolismo Energético , Linfocinas/metabolismo , Macrófagos/imunologia , Obesidade/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Termogênese , Tecido Adiposo Marrom/imunologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Hemócitos/imunologia , Fígado/imunologia , Linfocinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Derivado de Plaquetas/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Sci Adv ; 7(25)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34134993

RESUMO

Mechanisms by which noncoding genetic variation influences gene expression remain only partially understood but are considered to be major determinants of phenotypic diversity and disease risk. Here, we evaluated effects of >50 million single-nucleotide polymorphisms and short insertions/deletions provided by five inbred strains of mice on the responses of macrophages to interleukin-4 (IL-4), a cytokine that plays pleiotropic roles in immunity and tissue homeostasis. Of >600 genes induced >2-fold by IL-4 across the five strains, only 26 genes reached this threshold in all strains. By applying deep learning and motif mutation analyses to epigenetic data for macrophages from each strain, we identified the dominant combinations of lineage-determining and signal-dependent transcription factors driving IL-4 enhancer activation. These studies further revealed mechanisms by which noncoding genetic variation influences absolute levels of enhancer activity and their dynamic responses to IL-4, thereby contributing to strain-differential patterns of gene expression and phenotypic diversity.


Assuntos
Interleucina-4 , Macrófagos , Animais , Elementos Facilitadores Genéticos , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo
8.
Ann Neurol ; 89(5): 942-951, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502028

RESUMO

OBJECTIVE: Understanding how different parts of the immune system contribute to pathogenesis in Parkinson's disease is a burning challenge with important therapeutic implications. We studied enrichment of common variant heritability for Parkinson's disease stratified by immune and brain cell types. METHODS: We used summary statistics from the most recent meta-analysis of genomewide association studies in Parkinson's disease and partitioned heritability using linkage disequilibrium score regression, stratified for specific cell types, as defined by open chromatin regions. We also validated enrichment results using a polygenic risk score approach and intersected disease-associated variants with epigenetic data and expression quantitative loci to nominate and explore a putative microglial locus. RESULTS: We found significant enrichment of Parkinson's disease risk heritability in open chromatin regions of microglia and monocytes. Genomic annotations overlapped substantially between these 2 cell types, and only the enrichment signal for microglia remained significant in a joint model. We present evidence suggesting P2RY12, a key microglial gene and target for the antithrombotic agent clopidogrel, as the likely driver of a significant Parkinson's disease association signal on chromosome 3. INTERPRETATION: Our results provide further support for the importance of immune mechanisms in Parkinson's disease pathogenesis, highlight microglial dysregulation as a contributing etiological factor, and nominate a targetable microglial gene candidate as a pathogenic player. Immune processes can be modulated by therapy, with potentially important clinical implications for future treatment in Parkinson's disease. ANN NEUROL 2021;89:942-951.


Assuntos
Microglia/imunologia , Doença de Parkinson/genética , Doença de Parkinson/imunologia , Cromatina/genética , Cromossomos Humanos Par 3/genética , Clopidogrel/farmacologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Imunidade Celular , Desequilíbrio de Ligação , Microglia/patologia , Monócitos/patologia , Herança Multifatorial , Doença de Parkinson/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores Purinérgicos P2Y12/genética , Medição de Risco
9.
Glia ; 69(4): 943-953, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33241604

RESUMO

Neuromyelitis optica (NMO) is an inflammatory disease of the central nervous system (CNS) most frequently mediated by serum autoantibodies against the water channel aquaporin 4, expressed on CNS astrocytes, resulting in primary astrocytopathy. There is no cure for NMO, and treatment with Type I interferon (IFNI)-IFNß is ineffective or even detrimental. We have previously shown that both NMO lesions and associated microglial activation were reduced in mice lacking the receptor for IFNß. However, the role of microglia in NMO is not well understood. In this study, we clarify the pathomechanism for IFNI dependence of and the role of microglia in experimental NMO. Transcriptome analysis showed a strong IFNI footprint in affected CNS tissue as well as in microglial subpopulations. Treatment with IFNß led to exacerbated pathology and further microglial activation as evidenced by expansion of a CD11c+ subset of microglia. Importantly, depletion of microglia led to suppression of pathology and decrease of IFNI signature genes. Our data show a pro-pathologic role for IFNI-activated microglia in NMO and open new perspectives for microglia-targeted therapies.


Assuntos
Interferon Tipo I , Neuromielite Óptica , Animais , Aquaporina 4 , Astrócitos , Camundongos , Microglia , Neuromielite Óptica/tratamento farmacológico
10.
Science ; 366(6469): 1134-1139, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31727856

RESUMO

Noncoding genetic variation is a major driver of phenotypic diversity, but functional interpretation is challenging. To better understand common genetic variation associated with brain diseases, we defined noncoding regulatory regions for major cell types of the human brain. Whereas psychiatric disorders were primarily associated with variants in transcriptional enhancers and promoters in neurons, sporadic Alzheimer's disease (AD) variants were largely confined to microglia enhancers. Interactome maps connecting disease-risk variants in cell-type-specific enhancers to promoters revealed an extended microglia gene network in AD. Deletion of a microglia-specific enhancer harboring AD-risk variants ablated BIN1 expression in microglia, but not in neurons or astrocytes. These findings revise and expand the list of genes likely to be influenced by noncoding variants in AD and suggest the probable cell types in which they function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Encéfalo/metabolismo , Elementos Facilitadores Genéticos/genética , Variação Genética , Microglia/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Células Cultivadas , Cromatina/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Deleção de Sequência
11.
Cell ; 173(7): 1796-1809.e17, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779944

RESUMO

Non-coding genetic variation is a major driver of phenotypic diversity and allows the investigation of mechanisms that control gene expression. Here, we systematically investigated the effects of >50 million variations from five strains of mice on mRNA, nascent transcription, transcription start sites, and transcription factor binding in resting and activated macrophages. We observed substantial differences associated with distinct molecular pathways. Evaluating genetic variation provided evidence for roles of ∼100 TFs in shaping lineage-determining factor binding. Unexpectedly, a substantial fraction of strain-specific factor binding could not be explained by local mutations. Integration of genomic features with chromatin interaction data provided evidence for hundreds of connected cis-regulatory domains associated with differences in transcription factor binding and gene expression. This system and the >250 datasets establish a substantial new resource for investigation of how genetic variation affects cellular phenotypes.


Assuntos
Variação Genética , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células da Medula Óssea/citologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Análise por Conglomerados , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
12.
EMBO J ; 36(22): 3292-3308, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28963396

RESUMO

Microglia are resident macrophages of the central nervous system that contribute to homeostasis and neuroinflammation. Although known to play an important role in brain development, their exact function has not been fully described. Here, we show that in contrast to healthy adult and inflammation-activated cells, neonatal microglia show a unique myelinogenic and neurogenic phenotype. A CD11c+ microglial subset that predominates in primary myelinating areas of the developing brain expresses genes for neuronal and glial survival, migration, and differentiation. These cells are the major source of insulin-like growth factor 1, and its selective depletion from CD11c+ microglia leads to impairment of primary myelination. CD11c-targeted toxin regimens induced a selective transcriptional response in neonates, distinct from adult microglia. CD11c+ microglia are also found in clusters of repopulating microglia after experimental ablation and in neuroinflammation in adult mice, but despite some similarities, they do not recapitulate neonatal microglial characteristics. We therefore identify a unique phenotype of neonatal microglia that deliver signals necessary for myelination and neurogenesis.


Assuntos
Encéfalo/citologia , Encéfalo/embriologia , Microglia/metabolismo , Bainha de Mielina/metabolismo , Neurogênese , Envelhecimento/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/ultraestrutura , Antígeno CD11c/metabolismo , Agregação Celular , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Placa Neural/metabolismo , Regulação para Cima/genética
13.
J Clin Invest ; 127(9): 3220-3229, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28758903

RESUMO

Microglia are the main resident macrophage population of the CNS and perform numerous functions required for CNS development, homeostasis, immunity, and repair. Many lines of evidence also indicate that dysregulation of microglia contributes to the pathogenesis of neurodegenerative and behavioral diseases. These observations provide a compelling argument to more clearly define the mechanisms that control microglia identity and function in health and disease. In this Review, we present a conceptual framework for how different classes of transcription factors interact to select and activate regulatory elements that control microglia development and their responses to internal and external signals. We then describe functions of specific transcription factors in normal and pathological contexts and conclude with a consideration of open questions to be addressed in the future.


Assuntos
Sistema Nervoso Central/citologia , Microglia/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Anti-Inflamatórios , Colesterol/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Variação Genética , Homeostase , Humanos , Sistema Imunitário , Inflamação , Metabolismo dos Lipídeos , Macrófagos/citologia , Camundongos , Fenótipo , Regiões Promotoras Genéticas , Receptores de Estrogênio/metabolismo , Peixe-Zebra
14.
Front Mol Neurosci ; 10: 206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713239

RESUMO

Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.

15.
Nat Neurosci ; 20(8): 1162-1171, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28671693

RESUMO

Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, Fcγ and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Antígeno CD11b/genética , Expressão Gênica/genética , Microglia/metabolismo , Axônios/metabolismo , Ciclo Celular/genética , Perfilação da Expressão Gênica , Humanos
16.
Science ; 356(6344)2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28546318

RESUMO

Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases.


Assuntos
Meio Ambiente , Redes Reguladoras de Genes/fisiologia , Microglia/citologia , Microglia/fisiologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatologia , Células Cultivadas , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Neurobiol Aging ; 55: 115-122, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28434692

RESUMO

Alzheimer's disease (AD) is strongly associated with microglia-induced neuroinflammation. Particularly, Aß plaque-associated microglia take on an "activated" morphology. However, the function and phenotype of these Aß plaque-associated microglia are not well understood. We show hyperreactivity of Aß plaque-associated microglia upon systemic inflammation in transgenic AD mouse models (i.e., 5XFAD and APP23). Gene expression profiling of Aß plaque-associated microglia (major histocompatibility complex II+ microglia) isolated from 5XFAD mice revealed a proinflammatory phenotype. The upregulated genes involved in the biological processes (gene ontology terms) included: "immune response to external stimulus" such as Axl, Cd63, Egr2, and Lgals3, "cell motility", such as Ccl3, Ccl4, Cxcr4, and Sdc3, "cell differentiation", and "system development", such as St14, Trpm1, and Spp1. In human AD tissue with similar Braak stages, expression of phagocytic markers and AD-associated genes, including HLA-DRA, APOE, AXL, TREM2, and TYROBP, was higher in laser-captured early-onset AD (EOAD) plaques than in late-onset AD plaques. Interestingly, the nonplaque parenchyma of both EOAD and late-onset AD brains, the expression of above-mentioned markers were similarly low. Here, we provide evidence that Aß plaque-associated microglia are hyperreactive in their immune response and phagocytosis in the transgenic AD mice as well as in EOAD brain tissue. We suggest that Aß plaque-associated microglia are the primary source of neuroinflammation related to AD pathology.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Microglia/imunologia , Placa Amiloide/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Animais , Apolipoproteínas E , Encéfalo/imunologia , Diferenciação Celular/genética , Movimento Celular/genética , Movimento Celular/imunologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Masculino , Glicoproteínas de Membrana , Camundongos Transgênicos , Pessoa de Meia-Idade , Fagocitose/genética , Fagocitose/imunologia , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Receptores Imunológicos , Receptor Tirosina Quinase Axl
18.
Glia ; 65(3): 460-473, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063173

RESUMO

The glial stress protein alpha B-crystallin (HSPB5) is an endogenous agonist for Toll-like receptor 2 in CD14+ cells. Following systemic administration, HSPB5 acts as a potent inhibitor of neuroinflammation in animal models and reduces lesion development in multiple sclerosis patients. Here, we show that systemically administered HSPB5 rapidly crosses the blood-brain barrier, implicating microglia as additional targets for HSPB5 along with peripheral monocytes and macrophages. To compare key players in the HSPB5-induced protective response of human macrophages and microglia, we applied weighted gene co-expression network analysis on transcript expression data obtained 1 and 4 h after activation. This approach identified networks of genes that are co-expressed in all datasets, thus reducing the complexity of the nonsynchronous waves of transcripts that appear after activation by HSPB5. In both cell types, HSPB5 activates a network of highly connected genes that appear to be functionally equivalent and consistent with the therapeutic effects of HSPB5 in vivo, since both networks include factors that suppress apoptosis, the production of proinflammatory factors, and the development of adaptive immunity. Yet, hub genes at the core of the network in either cell type were strikingly different. They prominently feature the well-known tolerance-promoting programmed-death ligand 1 as a key player in the macrophage response to HSPB5, and the immune-regulatory enzyme cyclooxygenase-2 (COX-2) in that of microglia. This latter finding indicates that despite its reputation as a potential target for nonsteroidal anti-inflammatory drugs, microglial COX-2 plays a central role in the therapeutic effects of HSPB5 during neuroinflammation. GLIA 2017;65:460-473.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Cadeia B de alfa-Cristalina/farmacologia , Animais , Encéfalo/citologia , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tecido Parenquimatoso/citologia , Tecido Parenquimatoso/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 395-405, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27838490

RESUMO

Aging is the key risk factor for Alzheimer's disease (AD). In addition, the amyloid-beta (Aß) peptide is considered a critical neurotoxic agent in AD pathology. However, the connection between these factors is unclear. We aimed to provide an extensive characterization of the gene expression profiles of the amyloidosis APP23 model for AD and control mice and to evaluate the effect of aging on these profiles. We also correlated our findings to changes in soluble Aß-levels and other pathological and symptomatic features of the model. We observed a clear biphasic expression profile. The first phase displayed a maturation profile, which resembled features found in young carriers of familial AD mutations. The second phase reflected aging processes and showed similarities to the progression of human AD pathology. During this phase, the model displayed a clear upregulation of microglial activation and lysosomal pathways and downregulation of neuron differentiation and axon guidance pathways. Interestingly, the changes in expression were all correlated to aging in general, but appeared more extensive/accelerated in APP23 mice.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Citoesqueleto/patologia , Microglia/patologia , Transcriptoma , Envelhecimento , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Citoesqueleto/genética , Modelos Animais de Doenças , Redes Reguladoras de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Mutação
20.
Glia ; 65(1): 138-149, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27757989

RESUMO

Microglia are brain resident macrophages important for brain development, connectivity, homeostasis and disease. However, it is still largely unclear how microglia functions and their identity are regulated at the molecular level. Although recent transcriptomic studies have identified genes specifically expressed in microglia, the function of most of these genes in microglia is still unknown. Here, we performed RNA sequencing on microglia acutely isolated from healthy and neurodegenerative zebrafish brains. We found that a large fraction of the mouse microglial signature is conserved in the zebrafish, corroborating the use of zebrafish to help understand microglial genetics in mammals in addition to studying basic microglia biology. Second, our transcriptome analysis of microglia following neuronal ablation suggested primarily a proliferative response of microglia, which we confirmed by immunohistochemistry and in vivo imaging. Together with the recent improvements in genome editing technology in zebrafish, these data offer opportunities to facilitate functional genetic research on microglia in vivo in the healthy as well as in the diseased brain. GLIA 2016;65:138-149.


Assuntos
Microglia/citologia , Microglia/metabolismo , Transcriptoma/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Morte Celular , Perfilação da Expressão Gênica/métodos , Imuno-Histoquímica/métodos , Macrófagos/citologia , Macrófagos/metabolismo , Análise de Sequência de RNA/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...